Abstrakti
We propose a deblurring method that incorporates gyroscope measurements into a convolutional neural network (CNN). With the help of such measurements, it can handle extremely strong and spatially-variant motion blur. At the same time, the image data is used to overcome the limitations of gyro-based blur estimation. To train our network, we also introduce a novel way of generating realistic training data using the gyroscope. The evaluation shows a clear improvement in visual quality over the state-of-the-art while achieving real-time performance. Furthermore, the method is shown to improve the performance of existing feature detectors and descriptors against the motion blur.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision, WACV 2019 |
Kustantaja | IEEE |
Sivut | 1914-1922 |
Sivumäärä | 9 |
ISBN (elektroninen) | 9781728119755 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 4 maalisk. 2019 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE Winter Conference on Applications of Computer Vision - Waikoloa Village, Yhdysvallat Kesto: 7 tammik. 2019 → 11 tammik. 2019 Konferenssinumero: 19 |
Julkaisusarja
Nimi | IEEE Winter Conference on Applications of Computer Vision |
---|---|
Kustantaja | IEEE |
ISSN (painettu) | 2472-6737 |
Conference
Conference | IEEE Winter Conference on Applications of Computer Vision |
---|---|
Lyhennettä | WACV |
Maa/Alue | Yhdysvallat |
Kaupunki | Waikoloa Village |
Ajanjakso | 07/01/2019 → 11/01/2019 |