Grassmannian codes from multiple families of mutually unbiased bases

Olav Tirkkonen, Christopher Boyd, Roope Vehkalahti

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

4 Sitaatiot (Scopus)

Abstrakti

We explore the underlying algebraic structure of Mutually Unbiased Bases (MUBs), and their application to code design. Columns in MUBs have inner products with absolute values less or equal to 1/√N. MUBs provide a systematic way of generating optimal codebooks for various coding and precoding applications. A maximal set of MUBs (MaxMUBs) in N = 2m dimensions, with m Z, can produce codebooks of QPSK lines with good distance properties and alphabets which limit processing complexity. We expand the construction by identifying that in N = 2m dimensions there exists N(m-1)/2 families of MUB, each with N matrices. Inner products of columns of these matrices are less or equal to 1/√2. As an example, we construct Grassmannian line codes from the columns of these matrices. Then decoding or encoding these codebooks can be performed without multiplications, and with a number of additions that scales linearly with the number of codewords, irrespectively of the dimension.

AlkuperäiskieliEnglanti
Otsikko2017 IEEE International Symposium on Information Theory, ISIT 2017
KustantajaIEEE
Sivut789-793
Sivumäärä5
ISBN (elektroninen)9781509040964
DOI - pysyväislinkit
TilaJulkaistu - 9 elok. 2017
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Symposium on Information Theory - Eurogress Aachen, Aachen, Saksa
Kesto: 25 kesäk. 201730 kesäk. 2017
https://isit2017.org/

Julkaisusarja

NimiIEEE International Symposium on Information Theory
ISSN (painettu)2157-8095
ISSN (elektroninen)2157-8117

Conference

ConferenceIEEE International Symposium on Information Theory
LyhennettäISIT
Maa/AlueSaksa
KaupunkiAachen
Ajanjakso25/06/201730/06/2017
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Grassmannian codes from multiple families of mutually unbiased bases'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä