Graph Neural Network Sensitivity Under Probabilistic Error Model

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

54 Lataukset (Pure)

Abstrakti

Graph convolutional networks (GCNs) can successfully learn the graph signal representation by graph convolution. The graph convolution depends on the graph filter, which contains the topological dependency of data and propagates data features. However, the estimation errors in the propagation matrix (e.g., the adjacency matrix) can have a significant impact on graph filters and GCNs. In this paper, we study the effect of a probabilistic graph error model on the performance of the GCNs. We prove that the adjacency matrix under the error model is bounded by a function of graph size and error probability. We further analytically specify the upper bound of a normalized adjacency matrix with self-loop added. Finally, we illustrate the error bounds by running experiments on a synthetic dataset and study the sensitivity of a simple GCN under this probabilistic error model on accuracy.

AlkuperäiskieliEnglanti
Otsikko2022 30th European Signal Processing Conference (EUSIPCO)
KustantajaIEEE
Sivut2146-2150
Sivumäärä5
ISBN (elektroninen)978-90-827970-9-1
ISBN (painettu)978-1-6654-6799-5
TilaJulkaistu - 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaEuropean Signal Processing Conference - Belgrade, Serbia
Kesto: 29 elok. 20222 syysk. 2022
Konferenssinumero: 30
https://2022.eusipco.org/

Julkaisusarja

NimiEuropean Signal Processing Conference
ISSN (painettu)2219-5491
ISSN (elektroninen)2076-1465

Conference

ConferenceEuropean Signal Processing Conference
LyhennettäEUSIPCO
Maa/AlueSerbia
KaupunkiBelgrade
Ajanjakso29/08/202202/09/2022
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Graph Neural Network Sensitivity Under Probabilistic Error Model'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä