GrandDetAuto: Detecting malicious nodes in large-scale autonomous networks

Tigist Abera, Ferdinand Brasser, Lachlan Gunn, Patrick Jauernig, David Koisser, Ahmad Reza Sadeghi

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

Autonomous collaborative networks of devices are rapidly emerging in numerous domains, such as self-driving cars, smart factories, critical infrastructure, and Internet of Things in general. Although autonomy and self-organization are highly desired properties, they increase vulnerability to attacks. Hence, autonomous networks need dependable mechanisms to detect malicious devices in order to prevent compromise of the entire network. However, current mechanisms to detect malicious devices either require a trusted central entity or scale poorly. In this paper, we present GrandDetAuto, the first scheme to identify malicious devices efficiently within large autonomous networks of collaborating entities. GrandDetAuto functions without relying on a central trusted entity, works reliably for very large networks of devices, and is adaptable to a wide range of application scenarios thanks to interchangeable components. Our scheme uses random elections to embed integrity validation schemes in distributed consensus, providing a solution supporting tens of thousands of devices. We implemented and evaluated a concrete instance of GrandDetAuto on a network of embedded devices and conducted large-scale network simulations with up to 100 000 nodes. Our results show the effectiveness and efficiency of our scheme, revealing logarithmic growth in run-time and message complexity with increasing network size. Moreover, we provide an extensive evaluation of key parameters showing that GrandDetAuto is applicable to many scenarios with diverse requirements.

AlkuperäiskieliEnglanti
OtsikkoProceedings of 24th International Symposium on Research in Attacks, Intrusions and Defenses, RAID 2021
KustantajaACM
Sivut220-234
Sivumäärä15
ISBN (elektroninen)9781450390583
DOI - pysyväislinkit
TilaJulkaistu - 7 lokak. 2021
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Symposium on Research in Attacks, Intrusions and Defenses - Virtual, Online, Espanja
Kesto: 6 lokak. 20218 lokak. 2021
Konferenssinumero: 24
https://raid2021.org/

Conference

ConferenceInternational Symposium on Research in Attacks, Intrusions and Defenses
LyhennettäRAID
Maa/AlueEspanja
KaupunkiVirtual, Online
Ajanjakso06/10/202108/10/2021
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'GrandDetAuto: Detecting malicious nodes in large-scale autonomous networks'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä