Goldstone mode and pair-breaking excitations in atomic Fermi superfluids

Tutkimustuotos: Lehtiartikkeli


  • Sascha Hoinka
  • Paul Dyke
  • Marcus G. Lingham
  • Jami Kinnunen

  • Georg M. Bruun
  • Chris J. Vale


  • Swinburne University of Technology
  • Aarhus University


Spontaneous symmetry breaking is a central paradigm of elementary particle physics1, magnetism2, superfluidity3 and superconductivity4. According to Goldstone's theorem, phase transitions that break continuous symmetries lead to the existence of gapless excitations in the long-wavelength limit. These Goldstone modes can become the dominant low-energy excitation, showing that symmetry breaking has a profound impact on the physical properties of matter. Here, we present a comprehensive study of the elementary excitations in a homogeneous strongly interacting Fermi gas through the crossover from a Bardeen-Cooper-Schrieffer (BCS) superfluid to a Bose-Einstein condensate (BEC) of molecules using two-photon Bragg spectroscopy. The spectra exhibit a discrete Goldstone mode, associated with the broken-symmetry superfluid phase, as well as pair-breaking single-particle excitations. Our techniques yield a direct determination of the superfluid pairing gap and speed of sound in close agreement with strong-coupling theories.


JulkaisuNature Physics
TilaJulkaistu - 4 lokakuuta 2017
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

ID: 15848182