Abstrakti
Spontaneous symmetry breaking is a central paradigm of elementary particle physics1, magnetism2, superfluidity3 and superconductivity4. According to Goldstone's theorem, phase transitions that break continuous symmetries lead to the existence of gapless excitations in the long-wavelength limit. These Goldstone modes can become the dominant low-energy excitation, showing that symmetry breaking has a profound impact on the physical properties of matter. Here, we present a comprehensive study of the elementary excitations in a homogeneous strongly interacting Fermi gas through the crossover from a Bardeen-Cooper-Schrieffer (BCS) superfluid to a Bose-Einstein condensate (BEC) of molecules using two-photon Bragg spectroscopy. The spectra exhibit a discrete Goldstone mode, associated with the broken-symmetry superfluid phase, as well as pair-breaking single-particle excitations. Our techniques yield a direct determination of the superfluid pairing gap and speed of sound in close agreement with strong-coupling theories.
Alkuperäiskieli | Englanti |
---|---|
Sivut | 943-946 |
Sivumäärä | 4 |
Julkaisu | Nature Physics |
Vuosikerta | 13 |
Numero | 10 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 4 lokak. 2017 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |