GNSS-denied geolocalization of UAVs by visual matching of onboard camera images with orthophotos

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

Abstrakti

Localization of low-cost unmanned aerial vehicles (UAVs) often relies on Global Navigation Satellite Systems (GNSS). GNSS are susceptible to both natural disruptions to radio signal and intentional jamming and spoofing by an adversary. A typical way to provide georeferenced localization without GNSS for small UAVs is to have a downward-facing camera and match camera images to a map. The downward-facing camera adds cost, size, and weight to the UAV platform and the orientation limits its usability for other purposes. In this work, we propose a Monte-Carlo localization method for georeferenced localization of an UAV requiring no infrastructure using only inertial measurements, a camera facing an arbitrary direction, and an orthoimage map. We perform orthorectification of the UAV image, relying on a local planarity assumption of the environment, relaxing the requirement of downward-pointing camera. We propose a measure of goodness for the matching score of an orthorectified UAV image and a map. We demonstrate that the system is able to localize globally an UAV with modest requirements for initialization and map resolution.
AlkuperäiskieliEnglanti
Otsikko20th International Conference on Advanced Robotics, ICAR 2021
KustantajaIEEE
Sivut555-562
Sivumäärä8
ISBN (elektroninen)978-1-6654-3684-7
ISBN (painettu)978-1-6654-3685-4
DOI - pysyväislinkit
TilaJulkaistu - 5 tammik. 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaInternational Conference on Advanced Robotics - Virtual, online, Ljubljana, Slovenia
Kesto: 7 jouluk. 202110 jouluk. 2021
Konferenssinumero: 20
https://icar-2021.org/

Conference

ConferenceInternational Conference on Advanced Robotics
LyhennettäICAR
Maa/AlueSlovenia
KaupunkiLjubljana
Ajanjakso07/12/202110/12/2021
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'GNSS-denied geolocalization of UAVs by visual matching of onboard camera images with orthophotos'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä