Glottal source estimation from coded telephone speech using a deep neural network

Narendra Nonavinakere Prabhakera, Manu Airaksinen, Paavo Alku

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

4 Sitaatiot (Scopus)
400 Lataukset (Pure)

Abstrakti

In speech analysis, the information about the glottal source is obtained from speech by using glottal inverse filtering (GIF). The accuracy of state-of-the-art GIF methods is sufficiently high when the input speech signal is of high-quality (i.e., with little noise or reverberation). However, in realistic conditions, particularly when GIF is computed from coded telephone speech, the accuracy of GIF methods deteriorates severely. To robustly estimate the glottal source under coded condition, a deep neural network (DNN)-based method is proposed. The proposed method utilizes a DNN to map the speech features extracted from the coded speech to the glottal flow waveform estimated from the corresponding clean speech. To generate the coded telephone speech, adaptive multi-rate (AMR) codec is utilized which is a widely used speech compression method. The proposed glottal source estimation method is compared with two existing GIF methods, closed phase covariance analysis (CP) and iterative adaptive inverse filtering (IAIF). The results indicate that the proposed DNN-based method is capable of estimating glottal flow waveforms from coded telephone speech with a considerably better accuracy in comparison to CP and IAIF.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
KustantajaInternational Speech Communication Association (ISCA)
Sivut3931-3935
Sivumäärä5
Vuosikerta2017-August
ISBN (painettu)978-1-5108-4876-4
DOI - pysyväislinkit
TilaJulkaistu - elok. 2017
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInterspeech - Stockholm, Ruotsi
Kesto: 20 elok. 201724 elok. 2017
Konferenssinumero: 18
http://www.interspeech2017.org/

Julkaisusarja

NimiInterspeech: Annual Conference of the International Speech Communication Association
ISSN (elektroninen)1990-9772

Conference

ConferenceInterspeech
Maa/AlueRuotsi
KaupunkiStockholm
Ajanjakso20/08/201724/08/2017
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Glottal source estimation from coded telephone speech using a deep neural network'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä