GLaMM: Pixel Grounding Large Multimodal Model

Hanoona Rasheed, Muhammad Maaz, Sahal Shaji, Abdelrahman Shaker, Salman Khan, Hisham Cholakkal, Rao M. Anwer, Eric Xing, Ming Hsuan Yang, Fahad S. Khan

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

14 Sitaatiot (Scopus)

Abstrakti

Large Multimodal Models (LMMs) extend Large Lan-guage Models to the vision domain. Initial LMMs used holistic images and text prompts to generate ungrounded textual responses. Recently, region-level LMMs have been used to generate visually grounded responses. However, they are limited to only referring to a single object category at a time, require users to specify the regions, or can-not offer dense pixel-wise object grounding. In this work, we present Grounding LMM (GLaMM), the first model that can generate natural language responses seamlessly in-tertwined with corresponding object segmentation masks. GLaMM not only grounds objects appearing in the con-versations but is flexible enough to accept both textual and optional visual prompts (region of interest) as input. This empowers users to interact with the model at various levels of granularity, both in textual and visual domains. Due to the lack of standard benchmarks for the novel setting of visually Grounded Conversation Generation (GCG), we in-troduce a comprehensive evaluation protocol with our curated grounded conversations. Our proposed GCG task requires densely grounded concepts in natural scenes at a large-scale. To this end, we propose a densely annotated Grounding-anything Dataset (GranD) using our proposed automated annotation pipeline that encompasses 7.5M unique concepts grounded in a total of 810M regions available with segmentation masks. Besides GCG, GLaMM also performs effectively on several downstream tasks, e.g., referring expression segmentation, image and region-level captioning and vision-language conversations.

AlkuperäiskieliEnglanti
OtsikkoProceedings - 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024
KustantajaIEEE
Sivut13009-13018
Sivumäärä10
ISBN (elektroninen)979-8-3503-5300-6
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE Conference on Computer Vision and Pattern Recognition - Seattle, Yhdysvallat
Kesto: 16 kesäk. 202422 kesäk. 2024

Julkaisusarja

NimiProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (painettu)1063-6919

Conference

ConferenceIEEE Conference on Computer Vision and Pattern Recognition
LyhennettäCVPR
Maa/AlueYhdysvallat
KaupunkiSeattle
Ajanjakso16/06/202422/06/2024

Sormenjälki

Sukella tutkimusaiheisiin 'GLaMM: Pixel Grounding Large Multimodal Model'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä