Geometry of Random Sparse Arrays

Mehmet Can Hücümcnoglu, Robin Rajamäki, Piya Pal

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

84 Lataukset (Pure)

Abstrakti

We consider random sparse arrays whose sensors are randomly placed on a grid of fixed size. Although deterministic sparse array geometries such as nested, coprime and their many variants have been extensively studied, less is known about difference/sum sets of random arrays. In this work, we analytically characterize the size of the contiguous segment of the so-called difference coarray of random sparse arrays. The difference coarray determines fundamental performance limits of sparse arrays and is therefore an essential object of study. Moreover, a large contiguous coarray is usually desired to guarantee unambiguous identification of many signal sources. We show that i.i.d. sampling schemes can be inadequate for guaranteeing a large contiguous coarray with high probability. Instead, one needs to design alternative random sampling schemes. We propose such a scheme and verify numerically that it yields random arrays with a difference coarray whose contiguous segment scales super-linearly with the expected number of sensors.

AlkuperäiskieliEnglanti
Otsikko56th Asilomar Conference on Signals, Systems and Computers, ACSSC 2022
ToimittajatMichael B. Matthews
KustantajaIEEE
Sivut476-480
Sivumäärä5
ISBN (elektroninen)978-1-6654-5906-8
DOI - pysyväislinkit
TilaJulkaistu - 7 maalisk. 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaAsilomar Conference on Signals, Systems, and Computers - Virtual, Online, Yhdysvallat
Kesto: 31 lokak. 20222 marrask. 2022

Julkaisusarja

NimiConference Record - Asilomar Conference on Signals, Systems and Computers
Vuosikerta2022-October
ISSN (painettu)1058-6393

Conference

ConferenceAsilomar Conference on Signals, Systems, and Computers
LyhennettäACSSC
Maa/AlueYhdysvallat
KaupunkiVirtual, Online
Ajanjakso31/10/202202/11/2022

Sormenjälki

Sukella tutkimusaiheisiin 'Geometry of Random Sparse Arrays'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä