Geometry of polynomial neural networks

Kaie Kubjas, Jiayi Li, Maximilian Wiesmann

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

Abstrakti

We study the expressivity and learning process for polynomial neural networks (PNNs) with monomial activation functions. The weights of the network parametrize the neuromanifold. We study certain neuromanifolds using tools from algebraic geometry: we give explicit descriptions as semialgebraic sets and characterize their Zariski closures, called neurovarieties. We study their dimension and associate an algebraic degree, the learning degree, to the neurovariety. The dimension serves as a geometric measure for the expressivity of the network, the learning degree is a measure for the complexity of training the network and provides upper bounds on the number of learnable functions. These theoretical results are accompanied with experiments.
AlkuperäiskieliEnglanti
Sivut295-328
JulkaisuAlgebraic Statistics
Vuosikerta15
Numero2
DOI - pysyväislinkit
TilaJulkaistu - 3 jouluk. 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Geometry of polynomial neural networks'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä