Geometry-Aware Supertagging with Heterogeneous Dynamic Convolutions

Kokos Kogkalidis, Michael Moortgat

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

The syntactic categories of categorial grammar formalisms are structured units made of smaller, indivisible primitives, bound together by the underlying grammar’s category formation rules. In the trending approach of constructive supertagging, neural models are increasingly made aware of the internal category structure. In turn, this enables them to more reliably predict rare and out-of-vocabulary categories, with significant implications for grammars previously deemed too complex to find practical use. In this work, we revisit constructive supertagging from a graph-theoretic perspective, and propose a framework based on heterogeneous dynamic graph convolutions, aimed at exploiting the distinctive structure of a supertagger’s output space. We test our
approach on a number of categorial grammar datasets spanning different languages and grammar formalisms, achieving substantial improvements over previous state of the art scores.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the 2023 CLASP Conference on Learning with Small Data
KustantajaAssociation for Computational Linguistics
Sivut107-119
ISBN (elektroninen)979-8-89176-000-4
TilaJulkaistu - 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaLearning with Small Data - Gothenburg, Ruotsi
Kesto: 11 syysk. 202312 syysk. 2023

Julkaisusarja

NimiCLASP Papers in Computational Linguistics
KustantajaAssociation for Computational Linguistics
Vuosikerta5
ISSN (elektroninen)2002-9764

Conference

ConferenceLearning with Small Data
LyhennettäLSD
Maa/AlueRuotsi
KaupunkiGothenburg
Ajanjakso11/09/202312/09/2023

Sormenjälki

Sukella tutkimusaiheisiin 'Geometry-Aware Supertagging with Heterogeneous Dynamic Convolutions'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä