Abstrakti
The syntactic categories of categorial grammar formalisms are structured units made of smaller, indivisible primitives, bound together by the underlying grammar’s category formation rules. In the trending approach of constructive supertagging, neural models are increasingly made aware of the internal category structure. In turn, this enables them to more reliably predict rare and out-of-vocabulary categories, with significant implications for grammars previously deemed too complex to find practical use. In this work, we revisit constructive supertagging from a graph-theoretic perspective, and propose a framework based on heterogeneous dynamic graph convolutions, aimed at exploiting the distinctive structure of a supertagger’s output space. We test our
approach on a number of categorial grammar datasets spanning different languages and grammar formalisms, achieving substantial improvements over previous state of the art scores.
approach on a number of categorial grammar datasets spanning different languages and grammar formalisms, achieving substantial improvements over previous state of the art scores.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings of the 2023 CLASP Conference on Learning with Small Data |
Kustantaja | Association for Computational Linguistics |
Sivut | 107-119 |
ISBN (elektroninen) | 979-8-89176-000-4 |
Tila | Julkaistu - 2023 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | Learning with Small Data - Gothenburg, Ruotsi Kesto: 11 syysk. 2023 → 12 syysk. 2023 |
Julkaisusarja
Nimi | CLASP Papers in Computational Linguistics |
---|---|
Kustantaja | Association for Computational Linguistics |
Vuosikerta | 5 |
ISSN (elektroninen) | 2002-9764 |
Conference
Conference | Learning with Small Data |
---|---|
Lyhennettä | LSD |
Maa/Alue | Ruotsi |
Kaupunki | Gothenburg |
Ajanjakso | 11/09/2023 → 12/09/2023 |