Generative Modelling with Inverse Heat Dissipation

Severi Rissanen, Markus Heinonen, Arno Solin

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaPosterScientificvertaisarvioitu

19 Sitaatiot (Scopus)

Abstrakti

While diffusion models have shown great success in image generation, their noise-inverting generative process does not explicitly consider the structure of images, such as their inherent multi-scale nature. Inspired by diffusion models and the empirical success of coarse-to-fine modelling, we propose a new diffusion-like model that generates images through stochastically reversing the heat equation, a PDE that locally erases fine-scale information when run over the 2D plane of the image. We interpret the solution of the forward heat equation with constant additive noise as a variational approximation in the diffusion latent variable model. Our new model shows emergent qualitative properties not seen in standard diffusion models, such as disentanglement of overall colour and shape in images. Spectral analysis on natural images highlights connections to diffusion models and reveals an implicit coarse-to-fine inductive bias in them.

AlkuperäiskieliEnglanti
Sivut1-54
Sivumäärä54
TilaJulkaistu - 1 helmik. 2023
OKM-julkaisutyyppiEi sovellu
TapahtumaInternational Conference on Learning Representations - Kigali, Ruanda
Kesto: 1 toukok. 20235 toukok. 2023
Konferenssinumero: 11
https://iclr.cc/

Conference

ConferenceInternational Conference on Learning Representations
LyhennettäICLR
Maa/AlueRuanda
KaupunkiKigali
Ajanjakso01/05/202305/05/2023
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Generative Modelling with Inverse Heat Dissipation'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä