Generative Deep Synthesis of MIMO Sensing Waveforms with Desired Transmit Beampattern

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

2 Lataukset (Pure)

Abstrakti

This paper develops a generative deep learning model for the synthesis of multiple-input multiple-output (MIMO) active sensing waveforms with desired properties, including constant modulus and a user-defined beampattern. The proposed approach is capable synthesizing unique phase codes of on-the-fly, which has the potential to reduce interference between co-existing active sensing systems and facilitate Low Probability of Intercept/Low Probability of Detection (LPI/LPD) radar operation. The paper extends our earlier work on synthesis of approximately orthogonal MIMO phase codes by introducing flexible control over the transmit beampatterns. The developed machine learning method employs a conditional Wasserstein Generative Adversarial Network (GAN) structure. The main benefits of the method are its ability to discover new waveforms on-demand (post training) and generate demanding beampatterns at lower computational complexity compared to structured optimization approaches.

AlkuperäiskieliEnglanti
OtsikkoConference Record of the 58th Asilomar Conference on Signals, Systems and Computers, ACSSC 2024
ToimittajatMichael B. Matthews
KustantajaIEEE
Sivut1194-1198
Sivumäärä5
ISBN (elektroninen)979-8-3503-5405-8
DOI - pysyväislinkit
TilaJulkaistu - 2025
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaAsilomar Conference on Signals, Systems and Computers - Pacific Grove, Yhdysvallat
Kesto: 27 lokak. 202430 lokak. 2024

Julkaisusarja

NimiConference Record - Asilomar Conference on Signals, Systems and Computers
ISSN (painettu)1058-6393

Conference

ConferenceAsilomar Conference on Signals, Systems and Computers
Maa/AlueYhdysvallat
KaupunkiPacific Grove
Ajanjakso27/10/202430/10/2024

Sormenjälki

Sukella tutkimusaiheisiin 'Generative Deep Synthesis of MIMO Sensing Waveforms with Desired Transmit Beampattern'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä