Generating Multivariate Synthetic Time Series Data for Absent Sensors from Correlated Sources

Julián Jerónimo Bañuelos, Stephan Sigg, Jiayuan He, Flora Salim, Jose Costa-Requena

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

12 Lataukset (Pure)

Abstrakti

Missing sensor data in human activity recognition is an active field of research that is being targeted with generative models for synthetic data generation. In contrast to most previous approaches, we aim to generate data of a sensor exclusively from data available at sensors in different body locations. Particularly, we evaluate existing approaches proposed in the literature for their suitability in this scenario. In this paper, we focus on the prediction of acceleration data and generate machine learning models based on generative adversarial networks and trained using correlated data from sensors in different body positions to generate synthetic sensor data that can replace the missing data from a sensor in a specific body position. The accuracy of the generated synthetic data is evaluated using a classification model based on a convolutional neural network for human activity recognition.

AlkuperäiskieliEnglanti
OtsikkoNetAISys 2024 - Proceedings of the 2024 2nd International Workshop on Networked AI Systems
KustantajaACM
Sivut19-24
Sivumäärä6
ISBN (elektroninen)979-8-4007-0661-5
DOI - pysyväislinkit
TilaJulkaistu - 3 kesäk. 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Workshop on Networked AI Systems - Minato-ku, Japani
Kesto: 3 kesäk. 20247 kesäk. 2024
Konferenssinumero: 2

Workshop

WorkshopInternational Workshop on Networked AI Systems
LyhennettäNetAISys
Maa/AlueJapani
KaupunkiMinato-ku
Ajanjakso03/06/202407/06/2024

Siteeraa tätä