Abstrakti
We present a video generation model that accurately reproduces object motion, changes in camera viewpoint, and new content that arises over time. Existing video generation methods often fail to produce new content as a function of time while maintaining consistencies expected in real environments, such as plausible dynamics and object persistence. A common failure case is for content to never change due to over-reliance on inductive bias to provide temporal consistency, such as a single latent code that dictates content for the entire video. On the other extreme, without long-term consistency, generated videos may morph unrealistically between different scenes. To address these limitations, we prioritize the time axis by redesigning the temporal latent representation and learning long-term consistency from data by training on longer videos. We leverage a two-phase training strategy, where we separately train using longer videos at a low resolution and shorter videos at a high resolution. To evaluate the capabilities of our model, we introduce two new benchmark datasets with explicit focus on long-term temporal dynamics.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Advances in Neural Information Processing Systems 35 (NeurIPS 2022) |
Toimittajat | S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh |
Kustantaja | Morgan Kaufmann Publishers |
Sivumäärä | 13 |
ISBN (painettu) | 9781713871088 |
Tila | Julkaistu - 2022 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisuussa |
Tapahtuma | Conference on Neural Information Processing Systems - New Orleans, Yhdysvallat Kesto: 28 marrask. 2022 → 9 jouluk. 2022 Konferenssinumero: 36 https://nips.cc/ |
Julkaisusarja
Nimi | Advances in Neural Information Processing Systems |
---|---|
Kustantaja | Morgan Kaufmann Publishers |
Vuosikerta | 35 |
ISSN (painettu) | 1049-5258 |
Conference
Conference | Conference on Neural Information Processing Systems |
---|---|
Lyhennettä | NeurIPS |
Maa/Alue | Yhdysvallat |
Kaupunki | New Orleans |
Ajanjakso | 28/11/2022 → 09/12/2022 |
www-osoite |