Generating Demonstrations for In-Context Compositional Generalization in Grounded Language Learning

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

14 Lataukset (Pure)

Abstrakti

In-Context-learning and few-shot prompting are viable methods compositional output generation. However, these methods can be very sensitive to the choice of support examples used. Retrieving good supports from the training data for a given test query is already a difficult problem, but in some cases solving this may not even be enough. We consider the setting of grounded language learning problems where finding relevant supports in the same or similar states as the query may be difficult. We design an agent which instead generates possible supports inputs and targets current state of the world, then uses them in-context-learning to solve the test query. We show substantially improved performance on a previously unsolved compositional generalization test without a loss of performance in other areas. The approach is general and can even scale to instructions expressed in natural language.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
ToimittajatYaser Al-Onaizan, Mohit Bansal, Yun-Nung Chen
KustantajaAssociation for Computational Linguistics
Sivut15960–15991
ISBN (painettu)979-8-89176-164-3
DOI - pysyväislinkit
TilaJulkaistu - marrask. 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaConference on Empirical Methods in Natural Language Processing - Miami, Yhdysvallat
Kesto: 12 marrask. 202416 marrask. 2024

Conference

ConferenceConference on Empirical Methods in Natural Language Processing
LyhennettäEMNLP
Maa/AlueYhdysvallat
KaupunkiMiami
Ajanjakso12/11/202416/11/2024

Sormenjälki

Sukella tutkimusaiheisiin 'Generating Demonstrations for In-Context Compositional Generalization in Grounded Language Learning'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä