Generating data of an absent sensor from correlated sources

Quang Ngo, Julian Jeronimo Banuelos, Stephan Sigg

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaPosterScientificvertaisarvioitu

Abstrakti

In remote healthcare, wearable biomedical sensors enable monitoring of patient activities and medical interventions remotely in real-time. However, data of some sensors or body sensor locations may be missing. Possible reasons are sensor malfunctions, transmission issues, or simply that people do not wear a particular sensor at the required body location. This may hamper the data analysis and also the ability to draw accurate medical conclusions. We investigate strategies to handle such absent sensor data. In particular, we compare K-Nearest Neighbour methods, Multivariate Imputation by Chained Equations, LightGBM Regressor, and CatBoost Regressor methods.

AlkuperäiskieliEnglanti
Sivut168-171
Sivumäärä4
DOI - pysyväislinkit
TilaJulkaistu - 31 maalisk. 2025
OKM-julkaisutyyppiEi sovellu
TapahtumaInternational Conference on the Internet of Things - Oulu, Suomi
Kesto: 19 marrask. 202422 marrask. 2024
Konferenssinumero: 14
https://iot-conference.org/iot2024/

Conference

ConferenceInternational Conference on the Internet of Things
LyhennettäIoT
Maa/AlueSuomi
KaupunkiOulu
Ajanjakso19/11/202422/11/2024
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Generating data of an absent sensor from correlated sources'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä