Generating Code World Models with Large Language Models Guided by Monte Carlo Tree Search

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

In this work we consider Code World Models, world models generated by a Large Language Model (LLM) in the form of Python code for model-based Reinforcement Learning (RL). Calling code instead of LLMs for planning has potential to be more precise, reliable, interpretable, and extremely efficient.However, writing appropriate Code World Models requires the ability to understand complex instructions, to generate exact code with non-trivial logic and to self-debug a long program with feedback from unit tests and environment trajectories. To address these challenges, we propose Generate, Improve and Fix with Monte Carlo Tree Search (GIF-MCTS), a new code generation strategy for LLMs. To test our approach in an offline RL setting, we introduce the Code World Models Benchmark (CWMB), a suite of program synthesis and planning tasks comprised of 18 diverse RL environments paired with corresponding textual descriptions and curated trajectories. GIF-MCTS surpasses all baselines on the CWMB and two other benchmarks, and we show that the Code World Models synthesized with it can be successfully used for planning, resulting in model-based RL agents with greatly improved sample efficiency and inference speed.
AlkuperäiskieliEnglanti
OtsikkoAdvances in Neural Information Processing Systems 37 (NeurIPS 2024)
ToimittajatA. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, C. Zhang
KustantajaCurran Associates Inc.
ISBN (painettu)9798331314385
TilaJulkaistu - 2025
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaConference on Neural Information Processing Systems - Vancouver, Canada, Vancouver , Kanada
Kesto: 10 jouluk. 202415 jouluk. 2024
Konferenssinumero: 38
https://neurips.cc/Conferences/2024

Julkaisusarja

NimiAdvances in Neural Information Processing Systems
KustantajaCurran Associates, Inc.
Vuosikerta37
ISSN (painettu)1049-5258

Conference

ConferenceConference on Neural Information Processing Systems
LyhennettäNeurIPS
Maa/AlueKanada
KaupunkiVancouver
Ajanjakso10/12/202415/12/2024
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Generating Code World Models with Large Language Models Guided by Monte Carlo Tree Search'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä