Generalizing Nesterov’s Acceleration Framework by Embedding Momentum Into Estimating Sequences: New Algorithm and Bounds

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

2 Sitaatiot (Scopus)

Abstrakti

We present a new type of heavy-ball momentum term, which is used to construct a class of generalized estimating sequences. These allow for accelerating the minimization process by exploiting the information accumulated in the previous iterates. Combining a newly introduced momentum term with the estimating sequences framework, we devise, as an example, a new black-box accelerated first-order method for solving smooth unconstrained optimization problems. We prove that the proposed method exhibits an improvement over the rate of the celebrated fast gradient method by at least a factor of 1/√ 2, and establish that lower bound on the number of iterations carried through until convergence is O (√ κ/2). Finally, the practical performance benefits of the proposed method are demonstrated by numerical experiments.

AlkuperäiskieliEnglanti
Otsikko2022 IEEE International Symposium on Information Theory (ISIT)
KustantajaIEEE
Sivut1506-1511
Sivumäärä6
ISBN (elektroninen)978-1-6654-2159-1
DOI - pysyväislinkit
TilaJulkaistu - 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Symposium on Information Theory - Espoo, Suomi
Kesto: 26 kesäk. 20221 heinäk. 2022

Julkaisusarja

NimiIEEE International Symposium on Information Theory
ISSN (elektroninen)2157-8117

Conference

ConferenceIEEE International Symposium on Information Theory
LyhennettäISIT
Maa/AlueSuomi
KaupunkiEspoo
Ajanjakso26/06/202201/07/2022

Sormenjälki

Sukella tutkimusaiheisiin 'Generalizing Nesterov’s Acceleration Framework by Embedding Momentum Into Estimating Sequences: New Algorithm and Bounds'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä