Generalized friendship paradox in networks with tunable degree-attribute correlation

Hang Hyun Jo, Young Ho Eom

    Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

    13 Sitaatiot (Scopus)
    99 Lataukset (Pure)

    Abstrakti

    One of the interesting phenomena due to topological heterogeneities in complex networks is the friendship paradox: Your friends have on average more friends than you do. Recently, this paradox has been generalized for arbitrary node attributes, called the generalized friendship paradox (GFP). The origin of GFP at the network level has been shown to be rooted in positive correlations between degrees and attributes. However, how the GFP holds for individual nodes needs to be understood in more detail. For this, we first analyze a solvable model to characterize the paradox holding probability of nodes for the uncorrelated case. Then we numerically study the correlated model of networks with tunable degree-degree and degree-attribute correlations. In contrast to the network level, we find at the individual level that the relevance of degree-attribute correlation to the paradox holding probability may depend on whether the network is assortative or dissortative. These findings help us to understand the interplay between topological structure and node attributes in complex networks.

    AlkuperäiskieliEnglanti
    Artikkeli022809
    Sivut1-6
    JulkaisuPhysical Review E
    Vuosikerta90
    Numero2
    DOI - pysyväislinkit
    TilaJulkaistu - 21 elokuuta 2014
    OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

    Sormenjälki

    Sukella tutkimusaiheisiin 'Generalized friendship paradox in networks with tunable degree-attribute correlation'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä