Abstrakti
The high complexity of planning with partial observability has motivated to find compact representations of belief state (sets of states) that reduce their size exponentially, including the 3-valued literal-based approximations by Baral et al. and tag-based approximations by Palacios and Geffner. We present a generalization of 3-valued literal-based approximations, and an algorithm that analyzes a succinctly represented planning problem to derive a set of formulas the truth of which accurately represents any reachable belief state. This set is not limited to literals and can contain arbitrary formulas. We demonstrate that a factored representation of belief states based on this analysis enables fully automated reduction of conformant planning problems to classical planning, bypassing some of the limitations of earlier approaches.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | PRICAI 2022: Trends in Artificial Intelligence - 19th Pacific Rim International Conference on Artificial Intelligence, PRICAI 2022, Shanghai, China, November 10-13, 2022, Proceedings |
Toimittajat | Sankalp Khanna, Jian Cao, Quan Bai, Guandong Xu |
Kustantaja | Springer |
Sivut | 104-117 |
ISBN (elektroninen) | 978-3-031-20862-1 |
ISBN (painettu) | 978-3-031-20861-4 |
DOI - pysyväislinkit | |
Tila | Julkaistu - marrask. 2022 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | Pacific Rim International Conference on Artificial Intelligence - Shanghai, Kiina Kesto: 10 marrask. 2022 → 13 marrask. 2022 Konferenssinumero: 19 |
Julkaisusarja
Nimi | Lecture Notes in Computer Science |
---|---|
Kustantaja | Springer |
Vuosikerta | 13629 LNCS |
ISSN (painettu) | 0302-9743 |
ISSN (elektroninen) | 1611-3349 |
Conference
Conference | Pacific Rim International Conference on Artificial Intelligence |
---|---|
Lyhennettä | PRICAI |
Maa/Alue | Kiina |
Kaupunki | Shanghai |
Ajanjakso | 10/11/2022 → 13/11/2022 |