Gandalf: Learning Label-label Correlations in Extreme Multi-label Classification via Label Features

Siddhant Kharbanda, Devaansh Gupta, Erik Schultheis, Atmadeep Banerjee, Cho Jui Hsieh, Rohit Babbar

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

17 Lataukset (Pure)

Abstrakti

Extreme Multi-label Text Classification (XMC) involves learning a classifier that can assign an input with a subset of most relevant labels from millions of label choices. Recent works in this domain have increasingly focused on a symmetric problem setting where both input instances and label features are short-text in nature. Short-text XMC with label features has found numerous applications in areas such as query-to-ad-phrase matching in search ads, title-based product recommendation, prediction of related searches. In this paper, we propose Gandalf, a novel approach which makes use of a label co-occurrence graph to leverage label features as additional data points to supplement the training distribution. By exploiting the characteristics of the short-text XMC problem, it leverages the label features to construct valid training instances, and uses the label graph for generating the corresponding soft-label targets, hence effectively capturing the label-label correlations. Surprisingly, models trained on these new training instances, although being less than half of the original dataset, can outperform models trained on the original dataset, particularly on the PSP@k metric for tail labels. With this insight, we aim to train existing XMC algorithms on both, the original and new training instances, leading to an average 5% relative improvements for 6 state-of-the-art algorithms across 4 benchmark datasets consisting of up to 1.3M labels. Gandalf can be applied in a plug-and-play manner to various methods and thus forwards the state-of-the-art in the domain, without incurring any additional computational overheads. Code has been open-sourced at www.github.com/xmc-aalto/InceptionXML.

AlkuperäiskieliEnglanti
OtsikkoKDD 2024 - Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
KustantajaACM
Sivut1360-1371
Sivumäärä12
ISBN (elektroninen)9798400704901
DOI - pysyväislinkit
TilaJulkaistu - 25 elok. 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaACM SIGKDD International Conference on Knowledge Discovery and Data Mining - Barcelona, Espanja
Kesto: 25 elok. 202429 elok. 2024
Konferenssinumero: 30

Conference

ConferenceACM SIGKDD International Conference on Knowledge Discovery and Data Mining
LyhennettäKDD
Maa/AlueEspanja
KaupunkiBarcelona
Ajanjakso25/08/202429/08/2024

Sormenjälki

Sukella tutkimusaiheisiin 'Gandalf: Learning Label-label Correlations in Extreme Multi-label Classification via Label Features'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä