Abstrakti
Bayesian inference plays an important role in phylogenetics, evolutionary biology, and in many other branches of science. It provides a principled framework for dealing with uncertainty and quantifying how it changes in the light of new evidence. For many complex models and inference problems, however, only approximate quantitative answers are obtainable. Approximate Bayesian computation (ABC) refers to a family of algorithms for approximate inference that makes a minimal set of assumptions by only requiring that sampling from a model is possible.We explain here the fundamentals of ABC, review the classical algorithms, and highlight recent developments.
Alkuperäiskieli | Englanti |
---|---|
Sivut | e66-e82 |
Julkaisu | SYSTEMATIC BIOLOGY |
Vuosikerta | 66 |
Numero | 1 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2016 |
OKM-julkaisutyyppi | A1 Julkaistu artikkeli, soviteltu |
Sormenjälki Sukella tutkimusaiheisiin 'Fundamentals and Recent Developments in Approximate Bayesian Computation'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.
Laitteet
Lehtileikkeet
-
ELFI: Engine for Likelihood-Free Inference facilitates more effective simulation
Aki Vehtari, Samuel Kaski & Marko Järvenpää
04/01/2017 → 10/01/2017
7 kohdetta/ Medianäkyvyys
Lehdistö/media: Esiintyminen mediassa