Function theory and spectral mapping theorems for antilinear operators

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Tutkijat

  • Marko Huhtanen
  • Allan Perämäki

Organisaatiot

  • University of Oulu

Kuvaus

Unlike in complex linear operator theory, polynomials or, more generally, Laurent series of antilinear operators cannot be modelled with complex analysis. There exists a corresponding function space, though, surfacing in spectral mapping theorems. These spectral mapping theorems are inclusive in general. Equality can be established in the self-adjoint case. The arising functions are shown to possess a biradial character. It is shown that to any given set of Jacobi parameters corresponds a biradial measure yielding these parameters in an iterative orthogonalization process in this function space, once equipped with the corresponding L2 structure.

Yksityiskohdat

AlkuperäiskieliEnglanti
Sivut451-473
Sivumäärä23
JulkaisuJOURNAL OF OPERATOR THEORY
Vuosikerta72
Numero2
TilaJulkaistu - 2014
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

ID: 9377954