From random matrix theory to coding theory: Volume of a metric ball in unitary group

Lu Wei*, Renaud Alexandre Pitaval, Jukka Corander, Olav Tirkkonen

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

7 Sitaatiot (Scopus)

Abstrakti

Volume estimates of metric balls in manifolds find diverse applications in information and coding theory. In this paper, new results for the volume of a metric ball in unitary group are derived via tools from random matrix theory. The first result is an integral representation of the exact volume, which involves a Toeplitz determinant of Bessel functions. A simple but accurate limiting volume formula is then obtained by invoking Szeg's strong limit theorem for large Toeplitz matrices. The derived asymptotic volume formula enables analytical evaluation of some coding-theoretic bounds of unitary codes. In particular, the Gilbert-Varshamov lower bound and the Hamming upper bound on the cardinality as well as the resulting bounds on code rate and minimum distance are derived. Moreover, bounds on the scaling law of code rate are found. Finally, a closed-form bound on the diversity sum relevant to unitary space-time codes is obtained, which was only computed numerically in the literature.

AlkuperäiskieliEnglanti
Artikkeli7876735
Sivut2814-2821
Sivumäärä8
JulkaisuIEEE Transactions on Information Theory
Vuosikerta63
Numero5
DOI - pysyväislinkit
TilaJulkaistu - 1 toukok. 2017
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'From random matrix theory to coding theory: Volume of a metric ball in unitary group'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä