Abstrakti
Search-based software engineering, a discipline that often requires finding optimal solutions, can be a viable source for problems that bridge theory and practice of evolutionary computation. In this research we consider one such problem: generation of data connections in a distributed control application designed according to the IEC 61499 industry standard. We perform the analysis of the fitness landscape of this problem and find why exactly the simplistic (1 + 1) evolutionary algorithm is slower than expected when finding an optimal solution to this problem. To counteract, we develop a population-based algorithm that explicitly maximises diversity among the individuals in the population. We show that this measure indeed helps to improve the running times.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings of the 2018 Genetic and Evolutionary Computation Conference Companion, GECCO 2018 |
Kustantaja | ACM |
Sivut | 1902-1905 |
Sivumäärä | 4 |
ISBN (elektroninen) | 9781450357647 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 6 heinäk. 2018 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | Genetic and Evolutionary Computation Conference - Kyoto, Japani Kesto: 15 heinäk. 2018 → 19 heinäk. 2018 |
Conference
Conference | Genetic and Evolutionary Computation Conference |
---|---|
Lyhennettä | GECCO |
Maa/Alue | Japani |
Kaupunki | Kyoto |
Ajanjakso | 15/07/2018 → 19/07/2018 |
Muu | A Recombination of the 27th International Conference on Genetic Algorithms (ICGA) and the 23rd Annual Genetic Programming Conference (GP) |