Projekteja vuodessa
Abstrakti
Natural materials, such as wood and bone, have a high fracture toughness and this is often attributed to their hierarchical microstructures. While previous studies have shown that hierarchy can increase the buckling strength of lattice materials, a detailed analysis of its impact on fracture toughness is missing. Here, we used analytical modeling and finite element simulations to predict the mode I and mode II fracture toughness of three hierarchical topologies: hexagonal, triangular, and Kagome lattices. Hierarchy significantly improved the fracture toughness of the bending-dominated hexagonal lattice. Notably, the hierarchical hexagonal lattice has a fracture toughness KIC that scales linearly with relative density ρ̄, whereas its non-hierarchical counterpart has KIC∝ρ̄2. In contrast, hierarchy did not improve the toughness of stretching-dominated triangular and Kagome lattices. Hierarchy did, however, modify the behavior of a Kagome lattice: its hierarchical design has a toughness that scales linearly with relative density, whereas KIC∝ρ̄ for its non-hierarchical counterpart. This work presents scaling laws for the fracture toughness of hierarchical lattices, enabling the design of tough architectures at very low densities.
Alkuperäiskieli | Englanti |
---|---|
Artikkeli | 113374 |
Sivumäärä | 14 |
Julkaisu | International Journal of Solids and Structures |
Vuosikerta | 316 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 15 kesäk. 2025 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Sormenjälki
Sukella tutkimusaiheisiin 'Fracture toughness of hierarchical lattice materials'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 1 Päättynyt
-
-: Micro-architectured materials for high toughness
St-Pierre, L. (Vastuullinen tutkija)
01/09/2019 → 31/08/2023
Projekti: Academy of Finland: Other research funding