Fourier–Hermite series for stochastic stability analysis of non-linear Kalman filters

Toni Karvonen, Simo Särkkä

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

3 Sitaatiot (Scopus)

Abstrakti

Stochastic stability results for the extended Kalman filter and some other non-linear filters have been available for some time now. In this context stochastic stability refers to mean square boundedness of the estimation error. In this article we use Fourier-Hermite series expansion to derive novel stability results for general discrete-time non-linear Kalman filters that can be interpreted as numerical integration rules of Gaussian integrals arising from moment-matching. We also provide an upper bound for the Kalman gain matrix that is not explicitly dependent on the measurement model Jacobian, eliminating thus the need to assume boundedness of this Jacobian. Furthermore, we formulate the system non-linearity assumptions so that it is possible to verify them when the model functions are Lipschitz continuous. We use these results for a priori assessment of the stability of a univariate non-linear filter and verify the results numerically.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the 19th International Conference on Information Fusion, FUSION 2016
KustantajaIEEE
Sivut1829-1836
Sivumäärä8
ISBN (elektroninen)978-0-9964527-4-8
TilaJulkaistu - heinäk. 2016
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Information Fusion - Heidelberg, Saksa
Kesto: 5 heinäk. 20168 heinäk. 2016
Konferenssinumero: 19
http://fusion2016.org/Main_Page

Conference

ConferenceInternational Conference on Information Fusion
LyhennettäFUSION
Maa/AlueSaksa
KaupunkiHeidelberg
Ajanjakso05/07/201608/07/2016
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Fourier–Hermite series for stochastic stability analysis of non-linear Kalman filters'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä