Flow-Based Clustering and Spectral Clustering: A Comparison

Y. Sarcheshmehpour*, Y. Tian, L. Zhang, A. Jung

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

1 Sitaatiot (Scopus)
201 Lataukset (Pure)

Abstrakti

We propose and study a novel graph clustering method for data with an intrinsic network structure. Similar to spectral clustering, we exploit an intrinsic network structure of data to construct Euclidean feature vectors. These feature vectors can then be fed into basic clustering methods such as k-means or Gaussian mixture model (GMM) based soft clustering. What sets our approach apart from spectral clustering is that we do not use the eigenvectors of a graph Laplacian to construct the feature vectors. Instead, we use the solutions of total variation minimization problems to construct feature vectors that reflect connectivity between data points. Our motivation is that the solutions of total variation minimization are piece-wise constant around a given set of seed nodes. These seed nodes can be obtained from domain knowledge or by simple heuristics that are based on the network structure of data. Our results indicate that our clustering methods can cope with certain graph structures that are challenging for spectral clustering methods.

AlkuperäiskieliEnglanti
Otsikko55th Asilomar Conference on Signals, Systems and Computers, ACSSC 2021
ToimittajatMichael B. Matthews
KustantajaIEEE
Sivut1292-1296
Sivumäärä5
ISBN (elektroninen)978-1-6654-5828-3
DOI - pysyväislinkit
TilaJulkaistu - 2021
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaAsilomar Conference on Signals, Systems & Computers - Virtual, Pacific Grove, Yhdysvallat
Kesto: 31 lokak. 20213 marrask. 2021
Konferenssinumero: 55

Julkaisusarja

NimiConference Record - Asilomar Conference on Signals, Systems and Computers
Vuosikerta2021-October
ISSN (painettu)1058-6393

Conference

ConferenceAsilomar Conference on Signals, Systems & Computers
LyhennettäACSSC
Maa/AlueYhdysvallat
KaupunkiPacific Grove
Ajanjakso31/10/202103/11/2021

Sormenjälki

Sukella tutkimusaiheisiin 'Flow-Based Clustering and Spectral Clustering: A Comparison'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä