Flatness Improves Backbone Generalisation in Few-Shot Classification

Rui Li, Martin Trapp, Marcus Klasson, Arno Solin

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

Deployment of deep neural networks in real-world settings typically requires adaptation to new tasks with few examples. Few-shot classification (FSC) provides a solution to this problem by leveraging pre-trained backbones for fast adaptation to new classes. However, approaches for multi-domain FSC typically result in complex pipelines aimed at information fusion and task-specific adaptation without consideration of the importance of backbone training. In this work, we introduce an effective strategy for backbone training and selection in multi-domain FSC by utilizing flatness-aware training and fine-tuning. Our work is theoretically grounded and empirically performs on par or better than state-of-the-art methods despite being simpler. Further, our results indicate that backbone training is crucial for good generalisation in FSC across different adaptation methods.

AlkuperäiskieliEnglanti
OtsikkoProceedings - 2025 IEEE Winter Conference on Applications of Computer Vision, WACV 2025
KustantajaIEEE
Sivut1072-1089
Sivumäärä18
ISBN (elektroninen)979-8-3315-1083-1
DOI - pysyväislinkit
TilaJulkaistu - 2025
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE Winter Conference on Applications of Computer Vision - Tucson, Yhdysvallat
Kesto: 28 helmik. 20254 maalisk. 2025

Julkaisusarja

NimiIEEE Workshop on Applications of Computer Vision
ISSN (elektroninen)2642-9381

Conference

ConferenceIEEE Winter Conference on Applications of Computer Vision
LyhennettäWACV
Maa/AlueYhdysvallat
KaupunkiTucson
Ajanjakso28/02/202504/03/2025

Sormenjälki

Sukella tutkimusaiheisiin 'Flatness Improves Backbone Generalisation in Few-Shot Classification'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä