Projekteja vuodessa
Abstrakti
Deployment of deep neural networks in real-world settings typically requires adaptation to new tasks with few examples. Few-shot classification (FSC) provides a solution to this problem by leveraging pre-trained backbones for fast adaptation to new classes. However, approaches for multi-domain FSC typically result in complex pipelines aimed at information fusion and task-specific adaptation without consideration of the importance of backbone training. In this work, we introduce an effective strategy for backbone training and selection in multi-domain FSC by utilizing flatness-aware training and fine-tuning. Our work is theoretically grounded and empirically performs on par or better than state-of-the-art methods despite being simpler. Further, our results indicate that backbone training is crucial for good generalisation in FSC across different adaptation methods.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings - 2025 IEEE Winter Conference on Applications of Computer Vision, WACV 2025 |
Kustantaja | IEEE |
Sivut | 1072-1089 |
Sivumäärä | 18 |
ISBN (elektroninen) | 979-8-3315-1083-1 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2025 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE Winter Conference on Applications of Computer Vision - Tucson, Yhdysvallat Kesto: 28 helmik. 2025 → 4 maalisk. 2025 |
Julkaisusarja
Nimi | IEEE Workshop on Applications of Computer Vision |
---|---|
ISSN (elektroninen) | 2642-9381 |
Conference
Conference | IEEE Winter Conference on Applications of Computer Vision |
---|---|
Lyhennettä | WACV |
Maa/Alue | Yhdysvallat |
Kaupunki | Tucson |
Ajanjakso | 28/02/2025 → 04/03/2025 |
Sormenjälki
Sukella tutkimusaiheisiin 'Flatness Improves Backbone Generalisation in Few-Shot Classification'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.-
Trapp Martin: Exploiting Probabilistic Circuits for Stochastic Processes and Deep Learning
Trapp, M. (Vastuullinen tutkija)
01/09/2022 → 31/08/2025
Projekti: RCF Postdoctoral Researcher
-
Solin Arno /AoF Fellow Salary: Probabilistic principles for latent space exploration in deep learning
Solin, A. (Vastuullinen tutkija)
01/09/2021 → 31/08/2026
Projekti: RCF Academy Research Fellow (new)
-
-: Finnish Center for Artificial Intelligence
Kaski, S. (Vastuullinen tutkija)
01/01/2019 → 31/12/2022
Projekti: Academy of Finland: Other research funding