FLAME: Taming Backdoors in Federated Learning

Thien Duc Nguyen*, Phillip Rieger, Huili Chen, Hossein Yalame, Helen Möllering, Hossein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, Shaza Zeitouni, Farinaz Koushanfar, Ahmad Reza Sadeghi, Thomas Schneider

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

13 Sitaatiot (Scopus)
13 Lataukset (Pure)

Abstrakti

Federated Learning (FL) is a collaborative machine learning approach allowing participants to jointly train a model without having to share their private, potentially sensitive local datasets with others. Despite its benefits, FL is vulnerable to so-called backdoor attacks, in which an adversary injects manipulated model updates into the federated model aggregation process so that the resulting model will provide targeted false predictions for specific adversary-chosen inputs. Proposed defenses against backdoor attacks based on detecting and filtering out malicious model updates consider only very specific and limited attacker models, whereas defenses based on differential privacy-inspired noise injection significantly deteriorate the benign performance of the aggregated model. To address these deficiencies, we introduce FLAME, a defense framework that estimates the sufficient amount of noise to be injected to ensure the elimination of backdoors. To minimize the required amount of noise, FLAME uses a model clustering and weight clipping approach. This ensures that FLAME can maintain the benign performance of the aggregated model while effectively eliminating adversarial backdoors. Our evaluation of FLAME on several datasets stemming from application areas including image classification, word prediction, and IoT intrusion detection demonstrates that FLAME removes backdoors effectively with a negligible impact on the benign performance of the models.

AlkuperäiskieliEnglanti
OtsikkoProceedings of the 31st USENIX Security Symposium, Security 2022
KustantajaUSENIX - THE ADVANCED COMPUTING SYSTEMS ASSOCIATION
Sivut1415-1432
Sivumäärä18
ISBN (elektroninen)9781939133311
TilaJulkaistu - 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaUSENIX Security Symposium - Boston, Yhdysvallat
Kesto: 10 elok. 202212 elok. 2022
Konferenssinumero: 31

Conference

ConferenceUSENIX Security Symposium
Maa/AlueYhdysvallat
KaupunkiBoston
Ajanjakso10/08/202212/08/2022

Sormenjälki

Sukella tutkimusaiheisiin 'FLAME: Taming Backdoors in Federated Learning'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä