Projekteja vuodessa
Abstrakti
This paper presents a framework for saliency estimation and fixation prediction in videos. The proposed framework is based on a hierarchical feature representation obtained by stacking convolutional layers of independent subspace analysis (ISA) filters. The feature learning is thus unsupervised and independent of the task. To compute the saliency, we then employ a multiresolution saliency architecture that exploits both local and global saliency. That is, for a given image, an image pyramid is initially built. After that, for each resolution, both local and global saliency measures are computed to obtain a saliency map. The integration of saliency maps over the image pyramid provides the final video saliency. We first show that combining local and global saliency improves the results. We then compare the proposed model with several video saliency models and demonstrate that the proposed framework is capable of predicting video saliency effectively, outperforming all the other models.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2017 |
Kustantaja | IEEE |
Sivut | 2225-2232 |
Sivumäärä | 8 |
ISBN (elektroninen) | 9781538607336 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 22 elok. 2017 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE Conference on Computer Vision and Pattern Recognition - Hawaii Convention Center, Honolulu, Yhdysvallat Kesto: 21 heinäk. 2017 → 26 heinäk. 2017 Konferenssinumero: 30 |
Julkaisusarja
Nimi | IEEE Computer Society Conference on Computer Vision and Pattern Recognition workshops |
---|---|
Kustantaja | IEEE |
ISSN (elektroninen) | 2160-7516 |
Conference
Conference | IEEE Conference on Computer Vision and Pattern Recognition |
---|---|
Lyhennettä | CVPR |
Maa/Alue | Yhdysvallat |
Kaupunki | Honolulu |
Ajanjakso | 21/07/2017 → 26/07/2017 |
Sormenjälki
Sukella tutkimusaiheisiin 'Fixation Prediction in Videos using Unsupervised Hierarchical Features'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 1 Päättynyt
-
Suomalainen laskennallisen päättelyn huippuyksikkö
Xu, Y., Rintanen, J., Kaski, S., Anwer, R., Parviainen, P., Soare, M., Vuollekoski, H., Rezazadegan Tavakoli, H., Peltola, T., Blomstedt, P., Puranen, S., Dutta, R., Gebser, M., Mononen, T., Bogaerts, B., Tasharrofi, S., Pesonen, H., Weinzierl, A. & Yang, Z.
01/01/2015 → 31/12/2017
Projekti: Academy of Finland: Other research funding