Fine-tuning of pre-trained models for classification of vocal intensity category from speech signals

Manila Kodali, Sudarsana Kadiri, Paavo Alku

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

1 Sitaatiot (Scopus)
35 Lataukset (Pure)

Abstrakti

Speakers regulate vocal intensity on many occasions for example to be heard over a long distance or to express vocal emotions. Humans can regulate vocal intensity over a wide sound pressure level (SPL) range and therefore speech can be categorized into different vocal intensity categories. Recent machine learning experiments have studied classification of vocal intensity category from speech signals which have been recorded without SPL information and which are represented on arbitrary amplitude scales. By fine-tuning four pre-trained models (wav2vec2-BASE, wav2vec2-LARGE, HuBERT, audio speech
transformers), this paper studies classification of speech into four intensity categories (soft, normal, loud, very loud), when speech is presented on such arbitrary amplitude scale. The fine-tuned model embeddings showed absolute improvements of 5% and 10-12% in accuracy compared to baselines for the target intensity category label and the SPL-based intensity category
label, respectively.
AlkuperäiskieliEnglanti
OtsikkoInterspeech 2024
KustantajaInternational Speech Communication Association (ISCA)
Sivut482-486
Sivumäärä5
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInterspeech - Kos Island, Kreikka
Kesto: 1 syysk. 20245 syysk. 2024

Julkaisusarja

NimiInterspeech
KustantajaInternational Speech Communication Association
ISSN (elektroninen)2958-1796

Conference

ConferenceInterspeech
Maa/AlueKreikka
KaupunkiKos Island
Ajanjakso01/09/202405/09/2024

Sormenjälki

Sukella tutkimusaiheisiin 'Fine-tuning of pre-trained models for classification of vocal intensity category from speech signals'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä