Few-shot model-based adaptation in noisy conditions

Karol Arndt*, Ali Ghadirzadeh, Murtaza Hazara, Ville Kyrki

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

42 Lataukset (Pure)

Abstrakti

Few-shot adaptation is a challenging problem in the context of simulation-to-real transfer in robotics, requiring safe and informative data collection. In physical systems, additional challenge may be posed by domain noise, which is present in virtually all real-world applications. In this letter, we propose to perform few-shot adaptation of dynamics models in noisy conditions using an uncertainty-aware Kalman filter-based neural network architecture. We show that the proposed method, which explicitly addresses domain noise, improves few-shot adaptation error over a blackbox adaptation LSTM baseline, and over a model-free on-policy reinforcement learning approach, which tries to learn an adaptable and informative policy at the same time. The proposed method also allows for system analysis by analyzing hidden states of the model during and after adaptation.

AlkuperäiskieliEnglanti
Artikkeli9384205
Sivut4193-4200
Sivumäärä8
JulkaisuIEEE Robotics and Automation Letters
Vuosikerta6
Numero2
DOI - pysyväislinkit
TilaJulkaistu - huhtikuuta 2021
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki

Sukella tutkimusaiheisiin 'Few-shot model-based adaptation in noisy conditions'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä