FENNEL: Streaming graph partitioning for massive scale graphs

Charalampos Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, Milan Vojnovic

    Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

    266 Sitaatiot (Scopus)

    Abstrakti

    Balanced graph partitioning in the streaming setting is a key problem to enable scalable and efficient computations on massive graph data such as web graphs, knowledge graphs, and graphs arising in the context of online social networks. Two families of heuristics for graph partitioning in the streaming setting are in wide use: place the newly arrived vertex in the cluster with the largest number of neighbors or in the cluster with the least number of non-neighbors. In this work, we introduce a framework which unifies the two seemingly orthogonal heuristics and allows us to quantify the interpolation between them. More generally, the framework enables a well principled design of scalable, streaming graph partitioning algorithms that are amenable to distributed implementations. We derive a novel one-pass, streaming graph partitioning algorithm and show that it yields significant performance improvements over previous approaches using an extensive set of real-world and synthetic graphs. Surprisingly, despite the fact that our algorithm is a one-pass streaming algorithm, we found its performance to be in many cases comparable to the de-facto standard offline software METIS and in some cases even superiror. For instance, for the Twitter graph with more than 1.4 billion of edges, our method partitions the graph in about 40 minutes achieving a balanced partition that cuts as few as 6.8% of edges, whereas it took more than 81/2 hours by METIS to produce a balanced partition that cuts 11.98% of edges. We also demonstrate the performance gains by using our graph partitioner while solving standard PageRank computation in a graph processing platform with respect to the communication cost and runtime.

    AlkuperäiskieliEnglanti
    OtsikkoWSDM 2014 - Proceedings of the 7th ACM International Conference on Web Search and Data Mining
    KustantajaACM
    Sivut333-342
    Sivumäärä10
    ISBN (painettu)9781450323512
    DOI - pysyväislinkit
    TilaJulkaistu - 2014
    OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
    TapahtumaACM International Conference on Web Search and Data Mining - New York, Yhdysvallat
    Kesto: 24 helmik. 201428 helmik. 2014
    Konferenssinumero: 7

    Conference

    ConferenceACM International Conference on Web Search and Data Mining
    LyhennettäWSDM
    Maa/AlueYhdysvallat
    KaupunkiNew York
    Ajanjakso24/02/201428/02/2014

    Sormenjälki

    Sukella tutkimusaiheisiin 'FENNEL: Streaming graph partitioning for massive scale graphs'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä