Fast and Robust Multi-View Multi-Task Learning via Group Sparsity

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussavertaisarvioitu

Tutkijat

Organisaatiot

  • Bioinformatics Center, Institute for Chemical Research, Kyoto University

Kuvaus

Multi-view multi-task learning has recently attracted more and more attention due to its dual-heterogeneity, i.e.,each task has heterogeneous features from multiple views, and probably correlates with other tasks via common views.Existing methods usually suffer from three problems: 1) lack the ability to eliminate noisy features, 2) hold a strict assumption on view consistency and 3) ignore the possible existence of task-view outliers.To overcome these limitations, we propose a robust method with joint group-sparsity by decomposing feature parameters into a sum of two components,in which one saves relevant features (for Problem 1) and flexible view consistency (for Problem 2),while the other detects task-view outliers (for Problem 3).With a global convergence property, we develop a fast algorithm to solve the optimization problem in a linear time complexity w.r.t. the number of features and labeled samples.Extensive experiments on various synthetic and real-world datasets demonstrate its effectiveness.

Yksityiskohdat

AlkuperäiskieliEnglanti
OtsikkoProceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019
TilaJulkaistu - 2019
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaInternational Joint Conference on Artificial Intelligence - Venetian Macao Resort Hotel, Macao, Kiina
Kesto: 10 elokuuta 201916 elokuuta 2019
Konferenssinumero: 28
http://ijcai19.org/

Conference

ConferenceInternational Joint Conference on Artificial Intelligence
LyhennettäIJCAI
MaaKiina
KaupunkiMacao
Ajanjakso10/08/201916/08/2019
www-osoite

ID: 36901804