Abstrakti
We study at T=0 the minimum energy of a domain wall and its gap to the first excited state, concentrating on two-dimensional random-bond Ising magnets. The average gap scales as ΔE1∼Lθf(Nz), where f(y)∼[lny]−1/2, θ is the energy fluctuation exponent, L is the length scale, and Nz is the number of energy valleys. The logarithmic scaling is due to extremal statistics, which is illustrated by mapping the problem into the Kardar-Parisi-Zhang roughening process. It follows that the susceptibility of domain walls also has a logarithmic dependence on the system size.
Alkuperäiskieli | Englanti |
---|---|
Artikkeli | 066110 |
Sivut | 1-4 |
Julkaisu | Physical Review E |
Vuosikerta | 63 |
Numero | 6 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2001 |
OKM-julkaisutyyppi | A1 Julkaistu artikkeli, soviteltu |
Tutkimusalat
- Interface and surface thermodynamics
- Interface structure and roughness
- random magnets