Extremal statistics in the energetics of domain walls

Eira T. Seppälä, M.J. Alava, P.M. Duxbury

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

2 Lataukset (Pure)

Abstrakti

We study at T=0 the minimum energy of a domain wall and its gap to the first excited state, concentrating on two-dimensional random-bond Ising magnets. The average gap scales as ΔE1∼Lθf(Nz), where f(y)∼[lny]−1/2, θ is the energy fluctuation exponent, L is the length scale, and Nz is the number of energy valleys. The logarithmic scaling is due to extremal statistics, which is illustrated by mapping the problem into the Kardar-Parisi-Zhang roughening process. It follows that the susceptibility of domain walls also has a logarithmic dependence on the system size.
AlkuperäiskieliEnglanti
Artikkeli066110
Sivut1-4
JulkaisuPhysical Review E
Vuosikerta63
Numero6
DOI - pysyväislinkit
TilaJulkaistu - 2001
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Tutkimusalat

  • Interface and surface thermodynamics
  • Interface structure and roughness
  • random magnets

Sormenjälki Sukella tutkimusaiheisiin 'Extremal statistics in the energetics of domain walls'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

  • Siteeraa tätä