Extensions and traces of functions of bounded variation on metric spaces

Panu Lahti*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

11 Sitaatiot (Scopus)

Abstrakti

In the setting of a metric space equipped with a doubling measure and supporting a Poincaré inequality, and based on results by Björn and Shanmugalingam (2007) [7], we show that functions of bounded variation can be extended from any bounded uniform domain to the whole space. Closely related to extensions is the concept of boundary traces, which have previously been studied by Hakkarainen et al. (2014) [17]. On spaces that satisfy a suitable locality condition for sets of finite perimeter, we establish some basic results for the traces of functions of bounded variation. Our analysis of traces also produces novel pointwise results on the behavior of functions of bounded variation in their jump sets.

AlkuperäiskieliEnglanti
Sivut521-537
Sivumäärä17
JulkaisuJournal of Mathematical Analysis and Applications
Vuosikerta423
Numero1
DOI - pysyväislinkit
TilaJulkaistu - 2015
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki

Sukella tutkimusaiheisiin 'Extensions and traces of functions of bounded variation on metric spaces'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä