Explaining Machine Learning-based Classifications of in-vivo Gastral Images

Avleen Malhi, Timotheus Kampik, Husanbir Singh Pannu, Manik Madhikermi, Kary Främling

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

266 Lataukset (Pure)

Abstrakti

This paper proposes an explainable machine learning tool that can potentially be used for decision support in medical image analysis scenarios. For a decision-support system it is important to be able to reverse-engineer the impact of features on the final decision outcome. In the medical domain, such functionality is typically required to allow applying machine learning to clinical decision making. In this paper, we present initial experiments that have been performed on in-vivo gastral images obtained from capsule endoscopy. Quantitative analysis has been performed to evaluate the utility of the proposed method. Convolutional neural networks have been used for training the validating of the image data set to provide the bleeding classifications. The visual explanations have been provided in the images to help health professionals trust the black box predictions. While the paper focuses on the in-vivo gastral image use case, most findings are generalizable.
AlkuperäiskieliEnglanti
Otsikko2019 Digital Image Computing
AlaotsikkoTechniques and Applications (DICTA)
KustantajaIEEE
Sivumäärä7
ISBN (elektroninen)978-1-7281-3856-5
ISBN (painettu)978-1-7281-3857-2
DOI - pysyväislinkit
TilaJulkaistu - joulukuuta 2019
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaInternational Conference on Digital Image Computing: Techniques and Applications - Hyatt Regency Perth, Perth, Austraalia
Kesto: 2 joulukuuta 20194 joulukuuta 2019

Conference

ConferenceInternational Conference on Digital Image Computing: Techniques and Applications
LyhennettäDICTA
MaaAustraalia
KaupunkiPerth
Ajanjakso02/12/201904/12/2019

Sormenjälki Sukella tutkimusaiheisiin 'Explaining Machine Learning-based Classifications of in-vivo Gastral Images'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä