Abstrakti
Changes in global and edge plasma parameters (H98(y,2), dimensionless collisionality ν*, core density peaking, separatrix density ne,sep) with variations in the D2 fueling rate and divertor configuration are unified into a single trend when mapped to ⟨Te,ot⟩, the spatially averaged spectroscopically derived outer target electron temperature. Dedicated JET with the ITER-like wall (JET-ILW) experiments in combination with an extended JET-ILW database of unseeded low-triangularity H-mode plasmas spanning a wide range of D2 fueling rates, Ip, Bt and heating power have demonstrated the importance of ⟨Te,ot⟩ as a key physics parameter linking the recycling particle source and detachment with plasma performance. The remarkably robust H98(y,2) trend with ⟨Te,ot⟩ is connected to a strong inverse correlation between ⟨Te,ot⟩, ne,sep and ν*, thus directly linking changes in the divertor recycling moderated by ⟨Te,ot⟩ with the previously established relationship between ν*, core density peaking and core pressure resulting in a degradation in core plasma performance with decreasing ⟨Te,ot⟩ (increasing ν*). A strong inverse correlation between the separatrix to pedestal density ratio, ne,sep/ne,ped, and ⟨Te,ot⟩ is also established, with the rise in ne,sep/ne,ped saturating at ⟨Te,ot⟩ > 10 eV. A strong reduction in H98(y,2) is observed as ⟨Te,ot⟩ is driven from 30 to 10 eV via additional D2 gas fueling, while the divertor remains attached. Consequently, the pronounced performance degradation in attached divertor conditions has implications for impurity seeding radiative divertor scenarios, in which H98(y,2) is already low (∼0.7) before impurities are injected into the plasma since moderate gas fueling rates are required to promote high divertor neutral pressure. A favorable pedestal pressure, pe,ped, dependence on Ip has also been observed, with an overall increase in pe,ped at Ip = 3.4 MA as ⟨Te,ot⟩ is driven down from attached to high-recycling divertor conditions. In contrast, pe,ped is reduced with decreasing ⟨Te,ot⟩ in the lower Ip branches. Further work is needed to (i) clarify the potential role of edge opacity on the observed favorable pedestal pressure Ip scaling; as well as to (ii) project the global and edge plasma performance trends with ⟨Te,ot⟩ to reactor-scale devices to improve predictive capability of the coupling between recycling and confined plasma fueling in what are foreseen to be more opaque edge plasma conditions.
| Alkuperäiskieli | Englanti |
|---|---|
| Artikkeli | 066030 |
| Sivut | 1-13 |
| Sivumäärä | 13 |
| Julkaisu | Nuclear Fusion |
| Vuosikerta | 62 |
| Numero | 6 |
| DOI - pysyväislinkit | |
| Tila | Julkaistu - kesäk. 2022 |
| OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Rahoitus
This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 and 2019–2020 under Grant Agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. This work was also supported by the US DOE under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. This scientific paper has been published as part of the international project co-financed by the Polish Ministry of Science and Higher Education within the programme called ‘PMW’ for 2021. This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan ( http://energy.gov/downloads/doe-public-access-plan ).