Experimental and Computational Study Toward Identifying Active Sites of Supported SnOx Nanoparticles for Electrochemical CO2 Reduction Using Machine-Learned Interatomic Potentials

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

Abstrakti

SnOx has received great attention as an electrocatalyst for CO2 reduction reaction (CO2RR), however; it still suffers from low activity. Moreover, the atomic-level SnOx structure and the nature of the active sites are still ambiguous due to the dynamism of surface structure and difficulty in structure characterization under electrochemical conditions. Herein, CO2RR performance is enhanced by supporting SnO2 nanoparticles on two common supports, vulcan carbon and TiO2. Then, electrolysis of CO2 at various temperatures in a neutral electrolyte reveals that the application window for this catalyst is between 12 and 30 °C. Furthermore, this study introduces a machine learning interatomic potential method for the atomistic simulation to investigate SnO2 reduction and establish a correlation between SnOx structures and their CO2RR performance. In addition, selectivity is analyzed computationally with density functional theory simulations to identify the key differences between the binding energies of *H and *CO2, where both are correlated with the presence of oxygen on the nanoparticle surface. This study offers in-depth insights into the rational design and application of SnOx-based electrocatalysts for CO2RR.

AlkuperäiskieliEnglanti
Artikkeli2402190
JulkaisuSmall
DOI - pysyväislinkit
TilaSähköinen julkaisu (e-pub) ennen painettua julkistusta - 25 toukok. 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Experimental and Computational Study Toward Identifying Active Sites of Supported SnOx Nanoparticles for Electrochemical CO2 Reduction Using Machine-Learned Interatomic Potentials'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä