Projekteja vuodessa
Abstrakti
An important yet challenging aspect of atomistic materials modeling is reconciling experimental and computational results. Conventional approaches involve generating numerous configurations through molecular dynamics or Monte Carlo structure optimization and selecting the one with the closest match to experiment. However, this inefficient process is not guaranteed to succeed. We introduce a general method to combine atomistic machine learning (ML) with experimental observables that produces atomistic structures compatible with experiment by design. We use this approach in combination with grand-canonical Monte Carlo within a modified Hamiltonian formalism, to generate configurations that agree with experimental data and are chemically sound (low in energy). We apply our approach to understand the atomistic structure of oxygenated amorphous carbon (a-COx), an intriguing carbon-based material, to answer the question of how much oxygen can be added to carbon before it fully decomposes into CO and CO2. Utilizing an ML-based X-ray photoelectron spectroscopy (XPS) model trained from GW and density functional theory (DFT) data, in conjunction with an ML interatomic potential, we identify a-COx structures compliant with experimental XPS predictions that are also energetically favorable with respect to DFT. Employing a network analysis, we accurately deconvolve the XPS spectrum into motif contributions, both revealing the inaccuracies inherent to experimental XPS interpretation and granting us atomistic insight into the structure of a-COx. This method generalizes to multiple experimental observables and allows for the elucidation of the atomistic structure of materials directly from experimental data, thereby enabling experiment-driven materials modeling with a degree of realism previously out of reach.
Alkuperäiskieli | Englanti |
---|---|
Sivut | 14645-14659 |
Sivumäärä | 15 |
Julkaisu | Journal of the American Chemical Society |
Vuosikerta | 146 |
Numero | 21 |
Varhainen verkossa julkaisun päivämäärä | 15 toukok. 2024 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 29 toukok. 2024 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Sormenjälki
Sukella tutkimusaiheisiin 'Experiment-Driven Atomistic Materials Modeling : A Case Study Combining X-Ray Photoelectron Spectroscopy and Machine Learning Potentials to Infer the Structure of Oxygen-Rich Amorphous Carbon'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.-
NEXTCELL Research costs: Next-generation interatomic potentials to simulate new cellulose-based materials (NEXTCELL)
Caro Bayo, M. (Vastuullinen tutkija), Ibragimova, R. (Projektin jäsen), Pršlja, P. (Projektin jäsen) & Järvinen, K. (Projektin jäsen)
01/09/2023 → 31/08/2025
Projekti: Academy of Finland: Other research funding
-
ATCAR: Uusien hiilipohjaisten materiaalien suunnittelu atomiskaalassa (ATCAR)
Caro Bayo, M. (Vastuullinen tutkija), Zarrouk, T. (Projektin jäsen), Pršlja, P. (Projektin jäsen), Jana, R. (Projektin jäsen), Quliyeva, U. (Projektin jäsen), Järvinen, K. (Projektin jäsen) & Mäkimartti, V. (Projektin jäsen)
01/09/2023 → 31/08/2027
Projekti: Academy of Finland: Other research funding
-
NEXTCELL: Next generation interatomic potentials to simulate new cellulose based materials
Caro Bayo, M. (Vastuullinen tutkija)
01/09/2020 → 31/08/2025
Projekti: Academy of Finland: Other research funding