Existence of parabolic minimizers to the total variation flow on metric measure spaces

Vito Buffa, Michael Collins, Cintia Pacchiano Camacho*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

2 Sitaatiot (Scopus)

Abstrakti

We give an existence proof for variational solutions u associated to the total variation flow. Here, the functions being considered are defined on a metric measure space (X, d, μ) satisfying a doubling condition and supporting a Poincaré inequality. For such parabolic minimizers that coincide with a time-independent Cauchy–Dirichlet datum u on the parabolic boundary of a space-time-cylinder Ω × (0 , T) with Ω ⊂ X an open set and T> 0 , we prove existence in the weak parabolic function space Lw1(0,T;BV(Ω)). In this paper, we generalize results from a previous work by Bögelein, Duzaar and Marcellini by introducing a more abstract notion for BV -valued parabolic function spaces. We argue completely on a variational level.

AlkuperäiskieliEnglanti
JulkaisuManuscripta Mathematica
DOI - pysyväislinkit
TilaSähköinen julkaisu (e-pub) ennen painettua julkistusta - 4 tammik. 2022
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki

Sukella tutkimusaiheisiin 'Existence of parabolic minimizers to the total variation flow on metric measure spaces'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä