Projekteja vuodessa
Abstrakti
The quantum geometry of Bloch states fundamentally affects a wide range of physical phenomena. The quantum Hall effect, for example, is governed by the Chern number, and flatband superconductivity by the distance between the Bloch states: The quantum metric. While understanding quantum geometry phenomena in the context of fermions is well established, less is known about the role of quantum geometry in bosonic systems where particles can undergo BoseEinstein condensation (BEC). In conventional singleband or continuum systems, excitations of a weakly interacting BEC are determined by the condensate density and the interparticle interaction energy. In contrast to this, we discover here fundamental connections between the properties of a weakly interacting BEC and the underlying quantum geometry of a multiband lattice system. We show that, in the flatband limit, the defining physical quantities of BEC, namely, the speed of sound and the quantum depletion, are dictated solely by the quantum geometry. We find that the speed of sound becomes proportional to the quantum metric of the condensed state. Furthermore, the quantum distance between the Bloch functions forces the quantum depletion and the quantum fluctuations of the densitydensity correlation to obtain finite values for infinitesimally small interactions. This is in striking contrast to dispersive bands where these quantities vanish with the interaction strength. Additionally, we show how in the flatband limit the supercurrent is carried by the quantum fluctuations and is determined by the Berry connections of the Bloch states. Our results reveal how nontrivial quantum geometry allows reaching strong quantum correlation regime of condensed bosons even with weak interactions. This is highly relevant, for example, for polariton and photon BECs where interparticle interactions are inherently small. Our predictions can be experimentally tested with flatband lattices already implemented in ultracold gases and various photonic platforms.
Alkuperäiskieli  Englanti 

Artikkeli  A33 
Sivumäärä  15 
Julkaisu  Physical Review B 
Vuosikerta  104 
Numero  14 
DOI  pysyväislinkit  
Tila  Julkaistu  21 lokakuuta 2021 
OKMjulkaisutyyppi  A1 Julkaistu artikkeli, soviteltu 
Sormenjälki
Sukella tutkimusaiheisiin 'Excitations of a BoseEinstein condensate and the quantum geometry of a flat band'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
 3 Päättynyt

Pitkän kantaman koherenssi nanosysteemeissä
Törmä, P., Kumar, P., Kliuiev, P., Moilanen, A., Julku, A., Arjas, K., Pyykkönen, V., Salerno, G., Topp, G., Aronen, K., Kuoppala, S. & Luntama, S.
01/01/2020 → 31/12/2021
Projekti: Academy of Finland: Other research funding

Pitkän kantaman koherenssi nanosysteemeissä
01/01/2017 → 31/12/2021
Projekti: Academy of Finland: Other research funding

Pitkän kantaman koherenssi nanosysteemeissä
Guo, R., Huhtinen, K., Liang, L., Moilanen, A., Törmä, P., Kumar, P., Nečada, M., Kliuiev, P., Daskalakis, K., Arjas, K., Peotta, S., Vanhala, T., Pyykkönen, V. & Tylutki, M.
01/01/2017 → 31/12/2019
Projekti: Academy of Finland: Other research funding