Examples of k-regular maps and interpolation spaces

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Tutkijat

  • Mateusz Michalek
  • Chris Miller

Organisaatiot

  • University of California at Berkeley
  • ree University of Berlin
  • Polish Acad Sci, Institute of Mathematics of the Polish Academy of Sciences, Polish Academy of Sciences, Inst Math

Kuvaus

A continuous map f : C-n -> C-N is k-regular if the image of any k distinct points spans a k-dimensional subspace. It is an important problem in topology and interpolation theory, going back to Borsuk and Chebyshev, to construct k-regular maps with small N, and only a few nontrivial examples are known so far. Applying tools from algebraic geometry we construct a 4-regular polynomial map C-3 -> C-11 and a 5-regular polynomial map C-3 -> C-14. (C) 2017 Elsevier Inc. All rights reserved.

Yksityiskohdat

AlkuperäiskieliEnglanti
Sivut94-108
Sivumäärä15
JulkaisuLinear Algebra and Its Applications
Vuosikerta530
TilaJulkaistu - 1 lokakuuta 2017
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

ID: 30273252