Projekteja vuodessa
Abstrakti
Graph Gaussian Processes (GGPs) provide a dataefficient solution on graph structured domains. Existing approaches have focused on static structures, whereas many real graph data represent a dynamic structure, limiting the applications of GGPs. To overcome this we propose evolvingGraph Gaussian Processes (e-GGPs). The proposed method is capable of learning the transition function of graph vertices over time with a neighbourhood kernel to model the connectivity and interaction changes between vertices. We assess
the performance of our method on time-series regression problems where graphs evolve over time. We demonstrate the benefits of e-GGPs over static graph Gaussian Process approaches.
the performance of our method on time-series regression problems where graphs evolve over time. We demonstrate the benefits of e-GGPs over static graph Gaussian Process approaches.
Alkuperäiskieli | Englanti |
---|---|
Sivumäärä | 6 |
Tila | Julkaistu - heinäk. 2021 |
OKM-julkaisutyyppi | Ei sovellu |
Tapahtuma | International Conference on Machine Learning: Time Series Workshop - Virtual, Online Kesto: 24 heinäk. 2021 → 24 heinäk. 2021 http://roseyu.com/time-series-workshop/ https://roseyu.com/time-series-workshop/ |
Workshop
Workshop | International Conference on Machine Learning: Time Series Workshop |
---|---|
Lyhennettä | TSW-ICML |
Kaupunki | Virtual, Online |
Ajanjakso | 24/07/2021 → 24/07/2021 |
www-osoite |
Sormenjälki
Sukella tutkimusaiheisiin 'Evolving-Graph Gaussian Processes'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 1 Päättynyt
-
-: AI hämähäkin seitti
Kyrki, V. (Vastuullinen tutkija), Arndt, K. (Projektin jäsen), Petrik, V. (Projektin jäsen) & Blanco Mulero, D. (Projektin jäsen)
01/01/2018 → 31/12/2022
Projekti: Academy of Finland: Other research funding