Evaluation of urban bus service reliability on variable time horizons using a hybrid deep learning method

Tuqiang Zhou, Wanting Wu, Liqun Peng, Mingyang Zhang*, Zhixiong Li, Yubing Xiong, Yuelong Bai

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

20 Sitaatiot (Scopus)

Abstrakti

Unreliable transit services can negatively impact transit ridership and discourage passengers from regularly choosing public transport. As the most important content of bus service reliability, accurate bus arrival prediction can improve travel efficiency for enabling a reliable and convenient transportation system. Accordingly, this paper proposes a novel deep learning method, i.e. variational mode decomposition long short-term memory (VMD-LSTM), for bus travel speed prediction in urban traffic networks using a forecast of bus arrival information on variable time horizons. The method uses the temporal and spatial patterns of the average bus speed series. The results show that the VMD-LSTM model outperforms other models on forecasting bus link speed series in future time intervals, whereas the artificial neural network model achieves the worst prediction. In conclusion, the VMD-LSTM method can detect irregular peaks of transit samples from a series of temporal or spatial variations and performs better on major and auxiliary corridors.

AlkuperäiskieliEnglanti
Artikkeli108090
Sivumäärä11
JulkaisuReliability Engineering and System Safety
Vuosikerta217
Varhainen verkossa julkaisun päivämäärä6 lokakuuta 2021
DOI - pysyväislinkit
TilaJulkaistu - tammikuuta 2022
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki

Sukella tutkimusaiheisiin 'Evaluation of urban bus service reliability on variable time horizons using a hybrid deep learning method'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä