Evaluating an Analog Main Memory Architecture for All-Analog In-Memory Computing Accelerators

Kazybek Adam*, Dipesh Monga, Omar Numan, Gaurav Singh, Kari Halonen, Martin Andraud

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

Analog in memory Computing (IMC) has emerged as a promising method to accelerate deep neural networks (DNNs) on hardware efficiently. Yet, analog computation typically focuses on the multiply and accumulate operation, while other operations are still being computed digitally. Hence, these mixed-signal IMC cores require extensive use of data converters, which can take a third of the total energy and area consumption. Alternatively, all-analog DNN computation is possible but requires increasingly challenging analog storage solutions, due to noise and leakage of advanced technologies. To enable all-analog DNN acceleration, this work demonstrates a feasible IMC architecture using an efficient analog main memory (AMM) cell. The proposed AMM cell is 42x and 5x more power and area efficient than a baseline analog storage cell. An all-analog architecture using this cell achieves potential efficiency gains of 15x compared with a mixed-signal IMC core using data converters.

AlkuperäiskieliEnglanti
Otsikko2024 IEEE 6th International Conference on AI Circuits and Systems, AICAS 2024 - Proceedings
KustantajaIEEE
Sivut248-252
Sivumäärä5
ISBN (elektroninen)979-8-3503-8363-8
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Conference on AI Circuits and Systems - Abu Dhabi, Yhdistyneet arabiemiirikunnat
Kesto: 22 huhtik. 202425 huhtik. 2024
Konferenssinumero: 6

Conference

ConferenceIEEE International Conference on AI Circuits and Systems
LyhennettäAICAS
Maa/AlueYhdistyneet arabiemiirikunnat
KaupunkiAbu Dhabi
Ajanjakso22/04/202425/04/2024

Sormenjälki

Sukella tutkimusaiheisiin 'Evaluating an Analog Main Memory Architecture for All-Analog In-Memory Computing Accelerators'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä