Estimation of groundwater storage from seismic data using deep learning

Timo Lähivaara*, Alireza Malehmir, Antti Pasanen, Leo Kärkkäinen, Janne M.J. Huttunen, Jan S. Hesthaven

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

6 Sitaatiot (Scopus)

Abstrakti

Convolutional neural networks can provide a potential framework to characterize groundwater storage from seismic data. Estimation of key components, such as the amount of groundwater stored in an aquifer and delineate water table level, from active-source seismic data are performed in this study. The data to train, validate and test the neural networks are obtained by solving wave propagation in a coupled poroviscoelastic–elastic media. A discontinuous Galerkin method is applied to model wave propagation, whereas a deep convolutional neural network is used for the parameter estimation problem. In the numerical experiment, the primary unknowns estimated are the amount of stored groundwater and water table level, while the remaining parameters, assumed to be of less of interest, are marginalized in the convolutional neural network-based solution. Results, obtained through synthetic data, illustrate the potential of deep learning methods to extract additional aquifer information from seismic data, which otherwise would be impossible based on a set of reflection seismic sections or velocity tomograms.

AlkuperäiskieliEnglanti
Sivut2115-2126
Sivumäärä12
JulkaisuGeophysical Prospecting
Vuosikerta67
Numero8
DOI - pysyväislinkit
TilaJulkaistu - 2019
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki

Sukella tutkimusaiheisiin 'Estimation of groundwater storage from seismic data using deep learning'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä